

UNIVERSITY OF CASTILLA-LA MANCHA

UNIVERSITY COLLEGE OF COMPUTER

SCIENCE

INFORMATION SECURITY AND

CYBERSECURITY MASTER’S DEGREE

MASTER'S THESIS

Exploitation of RADIUS protocol in WIFI networks

FERNANDO ÁMEZ GARCÍA

September, 2019

UNIVERSITY OF CASTILLA-LA MANCHA

UNIVERSITY COLLEGE OF COMPUTER

SCIENCE

Computer Systems Department

MASTER'S THESIS

 Exploitation of RADIUS protocol in WIFI networks

Autor: FERNANDO ÁMEZ GARCÍA

Director: David Meléndez Cano

September, 2019

Summary

Nowadays, the WIFI networks are very extended in enterprises. In case that an

enterprise wants to centralize or delegate the authentication of its wireless stations against an

access point, one can think about Radius as the first solution.

The Radius authentication server in charge of validating the credentials of these

wireless stations will be placed in a LAN (Local Area Network). How secure is this method

of authentication if someone with malicious intentions has access to this network? Can this

person compromise the authentication process by carrying out a Man in The Middle Attack

and then intercepting and modifying the content of the RADIUS packets intended to the

authentication server?

This document will answer all these questions and some others that the reader may

wonder when taking into detail about the Radius and EAP protocols.

Acknowledgements

Thanks to my parents for the love and

compromise that they dedicated to me.

Without them, this work would not be

possible. Thanks also to my sister for

supporting me with her happiness and sense

of humour. Thanks also to Raúl for

supporting me with the realization of this

document. Thanks to Irene who helped me a

lot with her attitude. I would like to

acknowledge the whole staff of the Master’s

Degree for making this work possible.

7

INDEX

CHAPTER 1. INTRODUCTION 13

1.1 INCENTIVE 13

1.2 OBJECTIVES 13

1.3 STRUCTURE OF THE REPORT 14

CHAPTER 2. Scenario 16

CHAPTER 3. RADIUS PROTOCOL 24

3.1 EAP message attribute 27

3.2 Vendor Specific Attributes 28

3.2.1 Microsoft Vendor Specific Attributes 29

3.2.1.1 MS-MPPE-Send-Key 29

3.2.1.2 MS-MPPE-Recv-Key 30

CHAPTER 4. EAP protocol 33

4.1.1 Identity 35

4.1.2 Legacy Nak 35

4.1.3 PEAP 35

4.1.3.1 EAP-TLS key derivation 37

4.1.4 MsChapV2 38

4.1.5 TLV 43

CHAPTER 5. Code structure 45

5.1.1 attack 46

5.1.1.1 secret.go 46

5.1.1.2 password.go 47

5.1.2 eap 47

5.1.2.1 eapCrypto.go 47

CHAPTER 6. Study case 59

CHAPTER 7. CONCLUSIONS AND PROPOSALS 68

7.1 CONCLUSIONS 68

7.2 FUTURE WORK AND POSSIBLE EXTENSIONS 69

BIBLIOGRAPHY 71

INTERNET LINKS 71

GLOSSARY OF TERMS 74

ANNEX A Configuration of Man In the Middle Attack 77

ANNEX B Options for Radius-Spy 79

9

FIGURE INDEX

Figure 1Scenario of study .. 16

Figure 2EAP traffic ... 17

Figure 3MitM Attack ... 18

Figure 4Study case .. 19

Figure 5Radius message .. 25

Figure 6Radius attribute .. 26

Figure 7Encapsulation of EAP messages .. 28

Figure 8Vendor Specific Attributes .. 28

Figure 9MPPE Send Key .. 30

Figure 10MPPE Recv Key .. 31

Figure 11EAP message ... 33

Figure 12EAP req/resp Data .. 34

Figure 13PEAP tunnel ... 36

Figure 14PEAP message ... 36

Figure 15MsCHAPv2 Message ... 39

Figure 16Challenge Message Data .. 40

Figure 17Response Message Data ... 41

Figure 18TLS local tunnel with Authentication Server .. 52

Figure 19TLS local tunnel with peer ... 52

Figure 20Key derivation .. 57

Figure 21Wireshark capture .. 59

Figure 22Radius attributes modification ... 60

Figure 23EAP identity message .. 60

Figure 24EAP-GTC message .. 60

Figure 25Legacy NAK message .. 61

Figure 26TLS session hijacking .. 61

Figure 27TLS payload fragmented .. 62

Figure 28PEAP ACK Message ... 62

Figure 29TLS session start .. 62

Figure 304-way handshake .. 63

Figure 31TLS handshake between peer and Radius-Spy .. 64

Figure 32PEAP Ack Message ... 64

Figure 33The handshake process between Radius-Spy and authentication server 65

Figure 34PEAP ACK message .. 65

Figure 35MsCHAPv2 challenge ... 66

Figure 36Test Scenario .. 77

11

13

CHAPTER 1. INTRODUCTION

1.1 INCENTIVE

1.2 OBJECTIVES

The aim of the study here is to analyse the way the authentication process takes place

in a WIFI network with delegated authentication over a Radius server as well as the protocols

involved in the process identifying their flaws and strengths. Once all the protocols are

analysed, a tool is developed in order to try to exploit the found flaws. The tool is an

executable developed in Golang language called Radius-Spy and will let us:

● Sniff packets

● Mangle packets

● Obtain sensitive data, such as encryption keys

The source code of the Radius-Spy tool can be found in the glossary of terms when

referring to Radius-Spy.

Of course, certain conditions must be respected so that the tool can exploit the protocols

with a 100% of success:

● The tool is executed inside a context of MitM (Man In the Middle Attack) so that the

machine in which the software is executed has total control of the communications

between the sides that participates in the authentication process.

● Sensitive data such as secrets and passwords are vulnerable to brute force attacks or

dictionary attacks, as they are not very robust (for example, short passwords).

Because the purpose of this study is to identify the weaknesses or robustness of the

authentication protocols, the work will focus on the different problems and challenges found

during the development of the tool to exploit the protocols. If no relevant flaws are found,

one can reach the conclusion that the authentication protocols are safe enough for a malicious

software to compromise them and the work here presented will be still valid even though the

tool does not present a real threat for these protocols. In this case, the work here presented

will be a proof of the robustness of the authentication protocols.

1.3 STRUCTURE OF THE REPORT

The second chapter specifies the scenario to study.

Radius protocol and EAP protocol chapters are intended to explain these protocols but

inside the scope of our scenario, thus, some stations trying to authenticate against a NAS

which will delegate the authentication process to an authentication server. Therefore, not

every detail about these protocols is explained here, but rather, a general understanding of

the protocols and some points that concern us to exploit the flaws of the authentication

process in our particular scenario. If the reader wants to research more about these protocols,

they can check the bibliography where every reference for every protocol can be found.

The fifth chapter explains us the structure of the code and the most important functions,

methods, structures, interfaces and variables used for the development of the software.

The sixth chapter details the study case and how the software deals with every obstacle

that one can find during a real authentication case.

The last chapter explains the following steps to carry out for a future work.

Chapter 2. Scenario

15

Chapter 2. Scenario

CHAPTER 2. Scenario

The scenario of study here is a WIFI network composed by some stations and an access

point. When one of the stations desires to join the WIFI network (by being associated to the

access point), the authentication of the station must be performed before the association in

order to validate the user credentials of such station.

In the authentication process, the station takes the role of peer and the access point, the

role of NAS.

At this point, the NAS can manage the authentication process itself or delegate this task

to an authentication server located outside the WIFI network.

In our scenario, the NAS will not manage the authentication process, but it will delegate

it to a authentication server located in a LAN where the access point is also located.

Figure 1Scenario of study

Chapter 2. Scenario

17

Some details to take into account about the configuration of scenario are the following

ones:

● The encryption mode for the WIFI network is WPA2.

● The credentials provided by the peer to authenticate against the authentication server

are the identity and password.

● The EAP method used for the phase 1 authentication is PEAP and the EAP method

used for phase 2 authentication is MsCHAPv2.

Below, one can see the flow of EAP packets that carry the authentication data between

peer and authentication server.

Figure 2EAP traffic

Given the scenario above presented, an attacker manages to have access to the LAN

and performs with success a MitM (Man In the Middle) Attack using a poisoning technique,

such as ARP poisoning and gains control over the communications between peer and

authentication server. The scenario is presented as follows now:

Chapter 2. Scenario

Figure 3MitM Attack

In this case, the EAP traffic is intercepted by our malicious software Radius-Spy and

manipulated so that the software takes control of the flow of the credentials exchange that is

taking place.

For our study case, the following scenario is proposed:

Chapter 2. Scenario

19

Figure 4Study case

The elements that participate in our study case are:

● Access point: A Raspberry PI 1 model B with a 802.11N transceiver connected

through USB. OS: Raspbian GNU/Linux 8

○ SSID: Famez

○ IP address LAN interface: 169.254.63.2

○ IP address WLAN interface: 169.254.63.10

○ DHCP address pool: 10.10.0.X

● Station: A VoCore v2. OS: OpenWrt r9330-880f8e6d32

○ IP address WLAN interface: Dynamic

● Attacker: Ubuntu 18.04.1 LTS

○ IP address LAN interface: 169.254.63.15

● Authentication server: Ubuntu 18.04.1 LTS

○ IP address LAN interface: 169.254.63.10

The secret shared between the NAS and authentication server is super. This secret is

used in the Radius protocol to protect the integrity and authenticity of the Radius packets (see

[RFC2865], Section 1).

The credentials used by the peer to authenticate itself are:

● Identity: testing

Chapter 2. Scenario

● Password: password

In order to play the role of access point, the Raspberry PI is running Hostapd with the

following configuration (file hostapd.conf):

ssid=Famez

interface=wlan0_ap

auth_algs=3

channel=4

driver=nl80211

hw_mode=g

logger_stdout=-1

logger_stdout_level=2

max_num_sta=5

ieee8021x=1

wpa_key_mgmt=WPA-EAP

rsn_pairwise=CCMP

wpa=2

wpa_pairwise=TKIP CCMP

own_ip_addr=127.0.0.1

auth_server_addr=169.254.63.10

auth_server_port=1812

auth_server_shared_secret=super

acct_server_addr=169.254.63.10

acct_server_port=1813

acct_server_shared_secret=super

To act as dhcp server, the Raspberry PI is running dhcpd. The configuration for this

software is the following one (file dhcpd.conf):

subnet 10.10.0.0 netmask 255.255.255.0 {

 default-lease-time 600;

 max-lease-time 7200;

 option subnet-mask 255.255.255.0;

 option broadcast-address 10.10.0.255;

 option routers 10.10.0.1;

 option domain-name-servers 8.8.8.8;

 range 10.10.0.2 10.10.0.254;

}

The configuration for the VoCore v2 computer is the following:

Chapter 2. Scenario

21

● File /etc/config/wireless:

config wifi-device 'radio0'

 option type 'mac80211'

 option channel '4'

 option hwmode '11g'

 option path 'platform/10300000.wmac'

 option htmode 'HT20'

 option disabled '0'

 option log_level '0'

config wifi-iface 'default_radio0'

 option device 'radio0'

 option network 'wwan'

 option mode 'sta'

 option ssid 'Famez'

 option auth 'auth=MSCHAPV2'

 option encryption 'wpa2'

 option eap_type 'peap'

 option identity 'testing'

 option password 'password'

● File /etc/config/network:

config interface 'loopback'

 option ifname 'lo'

 option proto 'static'

 option ipaddr '127.0.0.1'

 option netmask '255.0.0.0'

config interface 'wwan'

 option proto 'dhcp'

The authentication server is running Freeradius with the following remarkable

configuration:

● File clients.conf:

client access_point {

 ipaddr = 169.254.63.2

 secret=super

}

Chapter 2. Scenario

● File users:

testing Cleartext-Password := "password"

CAPÍTULO 3

Capítulo 3. Radius protocol

24

CHAPTER 3. RADIUS PROTOCOL

The Radius protocol is defined in [RFC2865].

The Radius protocol is used for the exchange of messages between the NAS and the

authentication server. This protocol is located in the application layer according to the OSI

model. For the transport layer, the protocol UDP is used. Two UDP ports are used, the port

1812 for authentication and port 1813 for accounting. As the scope of this document is to

analyse the authentication flaws of the Radius protocol, we are going to focus on the port

1812.

The Radius protocol defines an exchange of messages between NAS and authentication

server. The NAS sends Access-Request messages to the authentication server and this one

answers with Access-Challenge messages. An identifier is used to match an Access-Request

message with its response (Access-Challenge) so that one can keep track of the order of the

messages and protect against replay attacks. Every time the NAS sends an Access-Request

message, the identifier is incremented by 1. The authentication server must answer with the

same identifier.

In order to protect the integrity and authenticity of the Radius messages, a 16-bytes field

called Authenticator is included in every Radius message. Depending on the type of message,

the Authenticator field is calculated in a different way:

● For Access-Request messages (sent by NAS as request), the field is randomly

generated.

● For the other types (sent by authentication server as response) including Access-

Challenge messages, the field is calculated by hashing all the fields of the message to

be sent (except from the Authenticator field as we have not calculated this field yet,

instead, we use the Authenticator field of the most recently received Access-Request

message) together with the shared secret between NAS and authentication server. To

Capítulo 3. Radius protocol

25

enter into further details, see [RFC2865], Section 3. Note that if the secret is not

known, the Authenticator field cannot be correctly calculated for Access-Challenge

messages and the NAS will reject them silently avoiding any possible attack.

When the authentication is finished, an Access-Accept or an Access-Reject message is

sent by the authentication server depending on whether the authentication succeeded or not.

Within these messages, several data is exchanged in form of attributes as we will see below.

A Radius message consists of the following fields:

Figure 5Radius message

● Code → It determines the type of packet. The list of codes are:

Code Type

1 Access-Request

2 Access-Accept

3 Access-Reject

4 Accounting-Request

5 Accounting-Response

11 Access-Challenge

12 Status-Server

13 Status-Client

255 Reserved

● Identifier → The Identifier field is one octet, and aids in matching requests and

replies. The RADIUS server can detect a duplicate request if it has the same client

source IP address and source UDP port and Identifier within a short span of time.

● Length → The length of the packets. This field fits in two octets and varies

regarding the number of attributes that are included in the packet.

● Authenticator: A 16 bytes chunk that provides the packet with integrity and

authentication to protect against replay attacks and also against modifications in the

packet. This field is calculated in different ways depending on the type of the packet

(Code). What concerns us in our research is the use of the Authenticator field to

Capítulo 3. Radius protocol

26

generate the Message-Authenticator attribute in order to protect the EAP-message

attribute against attacks and also to calculate the Authenticator field for response

packets from the authentication server.

● Attributes: They carry the authentication and authorization details. The number of

attributes is variable as well as its length. They are composed by:

○ Type

○ Length: The total length of the attribute (including the type, the length itself

and the value)

○ Value: The actual content of the attribute.

Figure 6Radius attribute

Some relevant attributes are listed:

Type Name Description

1 User Name The name of the user to be authenticated. See

[RFC2865].

4 NAS IP Ip address of the NAS. See [RFC2865].

5 NAS Port The physical port number of the NAS which is

authenticating the user. See [RFC2865].

12 FramedMTU Used to indicate the Maximum Transmission Unit

(MTU) to be configured for the user. See [RFC2865].

24 State See [RFC2865].

26 Vendor Specific Vendor specific attributes defines a subset of attributes

that extends the initial attributes list.

They are composed by the Vendor Id, the Type, the

Length and the Value of the attribute.

This attribute type will be analysed in more detail in

Vendor specific Attributes.

30 Called Station Id The MAC address and SSID of the Access Point (AP)

or NAS that will delegate the authentication process to

the authentication server. See [RFC2865].

31 Calling Station Id The MAC address of the station (STA) or peer that

desires to be authenticated. See [RFC2865].

Capítulo 3. Radius protocol

27

44 Account Session Id See [RFC2866].

61 NAS Port Type This Attribute indicates the type of the physical port of

the NAS which is authenticating the user. Must be 19

when authenticating WIFI networks. See [RFC2865].

77 Connect-Info Sent from the NAS to indicate the nature of the user’s

connection. See [RFC2869]. Example: 54 Mbps,

802.11g.

79 EAPMessage Encapsulated EAP message exchanged between the

peer and the authentication server. See [RFC3579],

Section 3.1.

80 Message Authenticator Field to ensure the integrity of the EAP message. This

field consists of a signature (using HMAC) of the

whole packet using as key the secret shared between

NAS and authentication server. If the message is not

an Access-Request message (Code: 1), the original

Authenticator field is substituted by the Authenticator

field of the most recently received Access-Request

message when calculating the signature. Should the

EAP message attribute is intentionally modified with

malicious purposes, the verification of the Message

Authenticator will not be correct and the message will

be silently discarded. See [RFC3579], Section 3.2 for

implementation details.

3.1 EAP message attribute

The EAP message attribute contains the EAP packets generated between the peer and

the authentication server.

The EAP protocol is where the authentication process really takes place. The Radius

protocol is used to transport these EAP packets between NAS and authentication server in a

secure way.

Once the peer has generated an EAP packet to carry out the authentication, the NAS

must encapsulate it inside a Radius packet as an attribute so that the authentication server

receives it and decapsulates it. In the same way, when the authentication server wants to

answer back the peer with an EAP packet, it encapsulates the EAP packet inside a Radius

message and the NAS has to decapsulate the EAP packet to forward it to the peer.

Capítulo 3. Radius protocol

28

Figure 7Encapsulation of EAP messages

The integrity of the EAP attribute is protected by the Message Authenticator attribute.

3.2 Vendor Specific Attributes

Vendor specific attributes lets specify a subset of attributes that are not defined in the

standard Radius Protocol (See [RFC2865]), providing specific functionality.

This particular type of attribute has the following format (See [RFC2865]. Section

5.26):

Figure 8Vendor Specific Attributes

● Type: Fixed to 2610 for vendor specific attributes.

● Length: The total length of the attribute

● Vendor-ID: The identifier for the specific vendor. For example, the Vendor-ID for

Microsoft is 31110.

● Vendor-Type: Type of attribute defined by the vendor. For example, Microsoft

Vendor (Vendor-ID: 31110) defines amongst others 2 types of attributes. Vendor-

Type: 1610 for MS-MPPE-Send-Key and Vendor-Type: 1710 for MS-MPPE-Recv-

Key.

Capítulo 3. Radius protocol

29

● Attribute-Specific: The actual content of the attribute. This is dependant of the

attribute type.

3.2.1 Microsoft Vendor Specific Attributes

Two remarkable Microsoft Vendor Specific Attributes must be mentioned as they play

an important role for the key exchange process that takes place after successfully

authenticating the peer. The specification of Microsoft Vendor Specific Attributes is found

in [RFC2548]. The Vendor-Id for Microsoft Vendor Specific Attributes is 31110.

The attributes that concern us here are the following ones:

3.2.1.1 MS-MPPE-Send-Key

This attribute contains the key from which the key that encrypts packets sent from the

access point to the station in the WIFI network is derived. See [RFC2548], Section 2.4.2.

The key is an EAP-TLS key previously calculated by the authentication server and the

peer, as one can check in EAP-TLS key derivation.

This attribute is sent from the authentication server to the NAS for the NAS to have

knowledge of the key used later for packet encryption from access point to the station. As

the message holding this attribute is originated by the authentication server, this message is

inevitably of type 1110 (Access-Challenge).

 If the reader wonders itself why the key is known by the peer (station) and not by the

NAS, the answer is that the key is derived during the authentication process that takes place

in the EAP message exchange between the peer and the authentication server. Even if the

NAS can read these EAP messages and encapsulate them into RADIUS messages (as

attributes of type 7910) intended to the authentication server and vice versa, the EAP messages

are normally encrypted from point-to-point to prevent third parties from obtaining the

credentials in clear text, excluding from the communication the NAS whose only duty is to

forward these messages.

The format of the attribute is as follows:

Capítulo 3. Radius protocol

30

Figure 9MPPE Send Key

The Attribute Specific field holds the key, nevertheless due to security issues, the key

is not included in clear text, instead the key is encrypted and then included in the Attribute

Specific field. The encryption is detailed in [RFC2548], Section 2.4.2 in case that the reader

wants to explore deeply the algorithm used to encrypt the key. What concerns us here is the

fact that one of the inputs used to encrypt the key is, among others, the secret shared between

the NAS and the authentication server which provides a way to verify that the key has not

been intentionally modified for malicious purposes by a third party who ignores the secret.

3.2.1.2 MS-MPPE-Recv-Key

This attribute contains the key from which the key that encrypts packets sent from the

station to the access point in the WIFI network is derived. See [RFC2548], Section 2.4.3.

The key is an EAP-TLS key previously calculated by the authentication server and the

peer, as one can check in EAP-TLS key derivation.

This attribute is sent from the authentication server to the NAS for the NAS to have

knowledge of the key used later for packet encryption from the station to the access point.

As the message holding this attribute is originated by the authentication server, this message

is inevitably of type 1110 (Access-Challenge).

 If the reader wonders itself why the key is known by the peer (station) and not by the

NAS, the answer is that the key is derived during the authentication process that takes place

in the EAP message exchange between the peer and the authentication server. Even if the

NAS can read these EAP messages and encapsulate them into RADIUS messages (as

attributes of type 7910) intended to the authentication server and vice versa, the EAP messages

are normally encrypted from point-to-point to prevent third parties from obtaining the

credentials in clear text, excluding from the communication the NAS whose only duty is to

forward these messages.

Capítulo 3. Radius protocol

31

The format of the attribute is as follows:

Figure 10MPPE Recv Key

The Attribute Specific field holds the key, nevertheless due to security issues, the key

is not included in clear text, instead the key is encrypted and then included in the Attribute

Specific field. The encryption is detailed in [RFC2548], Section 2.4.3 in case that the reader

wants to explore deeply the algorithm used to encrypt the key. What concerns us here is the

fact that one of the inputs used to encrypt the key is, among others, the secret shared between

the NAS and the authentication server which provides a way to verify that the key has not

been intentionally modified for malicious purposes by a third party who ignores the secret.

CAPÍTULO 4

Capítulo 4. EAP protocol

33

CHAPTER 4. EAP protocol

The Extensible Authentication Protocol (EAP) is used to exchange the credentials

necessary to authenticate a certain element. The EAP conversation takes place between the

authenticating peer and the authentication server. The peer will send the credentials necessary

to prove that the identity of the user behind the peer is valid. The authentication server will

check this credentials and will answer back indicating whether the credentials are correct or

not and some other information to be treated by the peer. The peer also checks whether the

server knows the credentials or not to avoid possible attacks so that the peer verifies that a

legitimate server granted access to the peer by checking the extra information sent back by

the authentication server. The detailed explanation of this protocol can be found in

[RFC3748].

The format for an EAP message is as follows:

Figure 11EAP message

● Code: Determines the type of message. They are the following:

Code Description

1 Request

2 Response

3 Success

Capítulo 4. EAP protocol

34

4 Failure

● Identifier: Used to match the request messages with the corresponding response

messages to avoid replay attacks and duplicates.

● Length: The length of the EAP message.

● Data: The payload of the EAP message. Its content depends on the code of the

message.

The authentication server is in charge of sending the request messages (Code: 1) and

the authenticating peer will answer back with response messages (Code: 2). Every time that

the authentication server sends a request message, the identifier field is incremented by 1.

The peer must send the same identifier in the response.

 Once the credentials have been verified and correct, a success message (Code: 3) is

sent by the authentication server to the peer. In case that the credentials are not valid, the

authentication server will send a failure message (Code: 4).

 For request and response messages, the format of the data field is as follows:

Figure 12EAP req/resp Data

● Type: The type for the EAP message. Though there are many different types, we are

going to focus only on those that are used in our scenario for the authentication.

Below, a list of the types to be treated:

Type Value

1 Identity

3 Legacy Nak

25 Peap

26 MsChapV2

33 TLV

Peap and MsChapV2 types are authentication methods in the sense that they provide

a way to exchange credentials whereas Identity, Legacy Nak and TLV, though used

in the authentication process, do not let exchange credentials.

Capítulo 4. EAP protocol

35

● Type-Data: The data for every type. This field depends on the type of EAP message.

4.1.1 Identity

The EAP identity message is a very simple message to request the identity of the

authenticating peer. The authentication server can then send a request message of type

identity demanding the identity of the peer. This one will respond with a response message

of type identity providing the identity. When the EAP communications between peer and

authentication server are started, the peer sends directly a response message providing the

identity inside without waiting for the authentication server to send a request message of type

identity. For further details, check [RFC3748], Section 5.1.

4.1.2 Legacy Nak

This type of message is sent only as response message, therefore, only the peer can

generate this message. If the peer does not agree with the EAP method used to carry out the

authentication, it can generate this type of message and propose a new EAP method to use.

Once the authentication server receives the Legacy Nak EAP message, the authentication

server will switch to the new EAP method proposed by the peer. Usually, the peer will

propose a method that provides encryption, such as PEAP or TTLS method. For further

details, check [RFC3748], Section 5.3.1.

4.1.3 PEAP

 Even though PEAP is an EAP method to authenticate the peer (see [PEAP]), this

method cannot work without a second EAP method such as MsChapV2. The aim of the PEAP

method is to establish a TLS tunnel between the peer and the authenticating server so that the

exchange of credentials is opaque to any other system (including the NAS). Inside this tunnel,

a second EAP method (MsCHAPv2 for example) is used to carry out the real exchange of

credentials in a more insecure way.

In this case, one can say that there are two authentication phases in the EAP protocol:

● The phase 1 in charge of providing a tunnel to protect the communications. In

this case, the PEAP method.

● The phase 2 where the authentication is actually performed inside the tunnel

established in phase 1. This is the role of the MsCHAPv2 method.

Capítulo 4. EAP protocol

36

Figure 13PEAP tunnel

In the image, one can see that between NAS and authentication server the

MsCHAPv2 messages (where the credentials exchange occurs) are tunneled inside PEAP

messages and at the same time, the PEAP messages are encapsulated as EAP message

attributes inside a Radius message. The NAS decapsulates the EAP messages from the

Radius message and forwards them to the peer. It encapsulates the received EAP messages

from the peer into a Radius message.

The format for a PEAP message is defined in [PEAP], Section 3.2 and Section 3.3.

Figure 14PEAP message

● Code: Already shown for EAP messages. Only codes 1 (request) and 2 (response) are

compatible with PEAP method.

● Identifier: Already shown for EAP messages.

● Length: Already shown for EAP messages.

● Type: Fixed to 2510 for PEAP messages.

● Flags: The size of this field is 5 bits. The meaning of each bit in this field is as follows:

○ L (Length included): If this flag is set, the TLS message length is included in

the PEAP message, otherwise, the TLS message length is not included.

○ M (More fragments): If set, indicates that the TLS Data of this message is not

the whole TLS message, but rather only a fragment of it and the other

Capítulo 4. EAP protocol

37

fragments will be found in the following PEAP messages. If set to 0, that

means that the TLS message was not fragmented or the last fragment of

fragmented TLS message was received.

○ S (PEAP Start): It indicates the start of the PEAP method.

○ R: Must be always 0.

● Ver: The version of the PEAP method. The size is 3 bits (from 0 to 7).

● TLS message length: Only present if L flag is set indicating the length of the whole

TLS message (so that we can know the original length in case that the message was

fragmented).

● TLS Data: The TLS message itself or one fragment of it in case that the message has

been fragmented.

4.1.3.1 EAP-TLS key derivation

 In order to encrypt the communications between the station that is being authenticated

(peer) and the access point (NAS) in a WIFI network two keys (one for transmission from

access point to station and one for transmission from station to access point) must be derived.

They are derived from the keyring material of the current established TLS session provided

the PEAP method (See [RFC5216], Section 2.3).

Even though the keys are only used by the peer and the NAS, the keys are derived by

the peer and the authentication server and not by the NAS because the TLS session is

established between the peer and the authentication server so that only they share the

sensitive data necessary to export the keyring material for the keys derivation. Once the keys

are derived by both the peer and the authentication server, the authentication server will

encrypt the keys and transmit them to the NAS inside a Radius message in form of the

Microsoft Vendor Specific attributes MS-MPPE-Send-Key and MS-MPPE-Recv-Key. Then,

the NAS can decrypt them for their use later in the exchange of packets between the access

point (NAS) and the station (peer) in the WIFI network.

The keyring material is exported from the client random and server random chunks

and the master secret. During the 4-way handshake, the TLS client sends a so called Client

Hello Message (see [RFC2246], Section 7.4.1.2) which contains in plaintext the client

random chunk which is a random chunk of 82 bytes. In the same way, the TLS server side

sends a Server Hello Message (see [RFC2246], Section 7.4.1.3) which contains in plaintext

the server random chunk, a random chunk of 28 bytes. Both the client random and server

random are exposed in plaintext and they are not sensitive data. However, the master secret

(see [RFC2246], Section 8.1) is the most sensitive data in a TLS session, because it is only

Capítulo 4. EAP protocol

38

known by the TLS client and TLS server. From this secret one can derive the keys used in

the TLS session and also derive no matter which keys by exporting the keyring material.

The keyring material is exported by using the PRF (TLS Pseudorandom Function)

function defined in [RFC2246], Section 5. As inputs to this function, apart from the client

random, server random and the master secret, a string called label is used so that the exported

keyring material will be different as long as the label string changes from one call to the PRF

to the following one.

 Keyring material = PRF(master_secret, label, client_random + server_random)

As example, the following calls to the PRF generate different keyring material:

Keyring material 1 = PRF(master_secret, label 1, client_random + server_random)

Keyring material 2 = PRF(master_secret, label 2, client_random + server_random)

The label to be used to export the corresponding keyring material for the derivation

of the EAP-TLS keys used for packet encryption later in the WIFI network is “client EAP

encryption” as conveyed in [RFC5216], Section 2.3.

4.1.4 MsChapV2

 This is an EAP method in which the authentication server sends a challenge packet

to the authenticating peer and this one resolves the challenge (only those who know the

credentials for the concerning user can resolve the challenge) and replies with the result back

to the authentication server by sending a response packet. Within the response, another

challenge is sent also to the authentication server so that the peer can verify that the server

also knows the credentials of the user and consequently, the peer can rely on the server. The

server then, finds the solution for the new challenge (by making use of the credentials that it

is supposed to know) and sends a success request packet to the peer as long as the peer

resolved correctly the challenge. Otherwise, the authentication server will reply with a failure

request packet. Once the success message is received by the peer, this one will check whether

the authentication server obtained the good solution for the challenge sent by the peer or not

and therefore, determine if the server is legitimate or not. In case that the solution provided

Capítulo 4. EAP protocol

39

by the server is right, the peer will send back a success response packet confirming the good

transaction. Under other conditions, the peer will answer with a failure response packet.

Should the reader wants to do further research about the method, they should check

[MSCHAPV2].

 The format for the MsCHAPv2 message is as follows (see [MSCHAPV2], Section

2):

Figure 15MsCHAPv2 Message

● Code: Already shown for EAP messages. Only codes 1 (request) and 2 (response) are

compatible with MsCHAPv2 method.

● Identifier: Already shown for EAP messages.

● Length: Already shown for EAP messages.

● Type: Fixed to 2610 for PEAP messages.

● OpCode: Identifies the type of MsCHAPv2 message. Below, the list of codes:

OpCode Type

1 Challenge

2 Response

3 Success

4 Failure

7 Change-password

● MS-CHAPv2-ID: An identifier with the same functionality as the identifier field.

● MS-Length: The length of the message including only OpCode, MS-CHAPv2-ID,

MS-Length and Data fields.

● Data: It depends on the type of MSChapV2 message (OpCode).

Capítulo 4. EAP protocol

40

As commented above, the authentication server starts the MsChapV2 communication

by sending a challenge message (Code: 1, OpCode: 1) to the peer. This message contains the

challenge field that is composed by 16 bytes randomly generated. The challenge field will be

used by the peer to calculate the response to the challenge to be sent back to the authentication

server. The format of the data field for the challenge message is the following (see

[MSCHAPV2], Section 2.1):

Figure 16Challenge Message Data

● Value-Size: Indicates the length of the Challenge field. Fixed to 1610.

● Challenge: Also called authenticator challenge. Random 16 bytes chunk to be

used for the calculation of the response from the peer.

● Name: This field has variable length and it is a character string that represents

the identification of the system transmitting the packet. Due to the fact that

our authentication server is running FreeRadius as the software in charge to

deal with the authentication and authorization protocols, the name will be

something like “freeradius-X.Y.Z” where X.Y.Z is the version.

 Once the peer has received the challenge message, this one proceed with the

calculation of the response called nt-response. We are not going to enter into details about

the calculation of the nt-response, instead it is important to remark that during the calculation,

the following inputs are used, and after applying hashing and encryption algorithms to such

inputs, the nt-response is obtained:

● Authenticator challenge: This corresponds with the challenge field from the challenge

message sent by the authentication server.

● Peer challenge: Another 16 bytes chunk randomly generated by the peer used to

calculate the nt-response and in addition to be transmitted to the authentication server

so that it can also resolve the second part of the challenge process.

● User name: The name of the user.

Capítulo 4. EAP protocol

41

● Password: The password for the given user.

None of these parameters are sent in plaintext to the network, rather they are used as

inputs in hashes functions and encryption algorithms to calculate the nt-response. The fact

that the peer challenge and authenticator challenge take part in the calculation of the nt-

response, makes the MsChapV2 method resilient to replay attacks. As the password and user

name are not transmitted in plaintext, this fact provides the method MsChapV2 with

robustness to leakage of credentials. To know the algorithms used to perform the calculation

of the nt-response, visit the following reference [RFC2759], Section 8.

 Once the nt-response is calculated, the peer generates and sends a response message

(Code: 2, OpCode: 2) with the following format for the data field ([MSCHAPV2], Section

2.2):

Figure 17Response Message Data

● Value-Size: Indicates the length of the Response field. Fixed to 4910.

● Response: The response is composed by:

○ 16 octets: Peer challenge

○ 8 octets: Reserved, must be zero

○ 24 octets: nt-response

○ 1 octet: Flags

● Name: An ASCII string which identifies the peer's user account name.

 What concerns us here are the subfields peer challenge and nt-response. The peer

challenge is the challenge generated by the peer that the authentication server must know for

the verification of the nt-response and the calculation of the solution to the challenge

proposed by the peer. The nt-response field is the actual nt-response calculated by the peer.

 The authentication server will receive then this response message and, as in the

message one can find also the peer challenge (the only input that was left to know by the

authenticator server), calculate itself the result of the expected nt-response and compare with

Capítulo 4. EAP protocol

42

the value received in the response message. If the calculated value matches with the received

one, the credentials are the right ones and the authentication server will send a success request

message (Code: 1, OpCode: 3), otherwise, the authentication server will send a failure request

message (Code: 1, OpCode: 4).

 The data field for the success request message is called message field and consists of

a character string with the following format (see [MSCHAPV2], Section 2.3):

"S=<auth_string> M=<message>"

The <auth_string> string is a 20 octet number encoded in ASCII as 40 hexadecimal

digits. It is calculated from the following inputs by applying to them several hashing

algorithms:

● Password

● Nt-response

● Peer challenge

● Authenticator challenge

● User name

The fact that the peer challenge, the authenticator challenge and the nt-response takes

part in the calculation process forces an attacker to intercept the communications (a Man In

the Middle Attack is mandatory). The password and username inputs also force the attacker

to know or discover by means of brute force attack the credentials for the user to be

authenticated. The credentials are hashed even several times avoiding the transmission of

them in plaintext and, because of the challenge chunks (authenticator and peer challenge)

that are randomly generated and change every time a peer tries to authenticate, the hashed

result is never the same. This provides robustness against different attacks. To see

implementation details of the hashing process and the calculation of <auth_string> string,

check [RFC2759], Section 8.7.

The purpose of the <auth_string> string is to provide the peer with a way to verify

whether the server is reliable or not (the result of <auth_string> can be only correct if the

server has knowledge of the credentials).

After receiving the success request message from the authentication server, the peer

decodes the 40 hexadecimal digits ASCII string <auth_string> from the message into a chunk

of 20 octets with the solution to the challenge proposed by the peer. If this chunk matches

with the chunk calculated locally by the peer (applying the same algorithms and inputs), the

peer answers back with a success response message (Code: 2, OpCode: 3). Otherwise, the

peer answers back with a failure response message (Code: 2, OpCode: 4).

Capítulo 4. EAP protocol

43

A success/failure response message only contains the fields Code, Identifier, Length,

Type and OpCode. The field OpCode will be 3 for the success response message and 4 for

the failure response message. The Code field will be 2 in any case. See [MSCHAPV2],

Section 2.4 and 2.6.

At this point, the MsCHAPv2 conversation is finished.

4.1.5 TLV

 We are not going to enter in detail with this type of EAP message. For the purpose of

this document, the reader must only know that this type of EAP message is sent by both the

peer and the authentication server to agree on the success of the EAP authentication process.

CHAPTER 5

Chapter 5. Code structure

45

CHAPTER 5. Code structure

The code of the software Radius-Spy is developed in Golang. The structure is as

follows:

├───attack

│ secret.go

│ password.go

│

├───eap

│ eapCrypto.go

│ eapidentity.go

│ eapmschapv2.go

│ eapnak.go

│ eappacket.go

│ eappeap.go

│ eaptlv.go

│

├───main

│ main.go

│

├───radius

│ radiuscrypto.go

│ radiuspacket.go

│

├───session

│ config.go

│ context.go

│ session.go

│ tlsSession.go

│

├───tlsadditions

│ handshake.go

│ keyring.go

│

└───utils

 utils.go

Chapter 5. Code structure

46

We are going to inspect all the folders one by one:

5.1.1 attack

This folder contains the code corresponding to the different attacks that we can perform

over the Radius protocol or EAP protocol.

5.1.1.1 secret.go

Dictionary attack to guess the secret shared between the NAS and the authentication

server used in the Radius protocol.

type packetInfo struct

This structure is used to keep track of the previously received Radius packets from a

given source, because we need a pair of packets Access-Request, Access-Challenge to carry

out the dictionary attack.

func GuessSecret(packet *radius.RadiusPacket, net.UDPAddr, net.UDPAddr,

bool) (bool, string)

This function will store the packet passed as argument in case that the packet is of type

Access-Request. Otherwise, it will compare the identifier of the Radius packet. If the

identifier matches with one of the stored Access-Request messages, a pair of Access-Request,

Access-Challenge messages is available and the dictionary attack can start by calling the

function trySecrets().

func trySecrets(request *radius.RadiusPacket, response

*radius.RadiusPacket, secretFile string, client net.UDPAddr) (bool,

string)

This function tries to guess the shared secret between NAS and authentication server

used in the Radius protocol by calculating the Authenticator field for an Access-Challenge

message and comparing it with the real value in the message. The words used as candidates

to be the secret in the calculation are taken from a file that can be passed as argument to the

tool Radius-Spy. To calculate the Authenticator field of an Access-Challenge message it is

Chapter 5. Code structure

47

necessary to know also the Authenticator field of the Access-Request message which has the

same Identifier as the Access-Challenge message used for the calculation. If the calculated

Authenticator field matches with the real Authenticator field for the Access-Challenge

message, the secret has been discovered, otherwise, we need to try with another word as

secret.

5.1.1.2 password.go

This folder contains the functions used to find out the password for the current identity.

5.1.2 eap

This folder contains the implementation of the Extensible Authentication Protocol and

the codification, decodification of some of the types used in this study case, like PEAP,

MsCHAPv2, Identity or LegacyNak.

5.1.2.1 eapCrypto.go

This file holds the implementation of the cryptographic algorithms used during the

MsCHAPv2 credentials exchange. For example, here one can find the functions responsible

of calculating the nt-response field for a MsCHAPv2 response packet and the authenticator

response for a success request message. All the functions defined here are implementations

of pseudocode defined in different RFCs, therefore, it is not worth it to enter into detail about

these functions. If the reader wants to know more about the implementation details of these

functions, they can take a look to the RFCs referenced in the commented lines of the

functions.

5.1.2.2 eapPacket.go

Contains the functions necessary to encode/decode a generic EAP message.

5.1.2.3 eapidentity.go

File to implement the class that represents a message of type EAP identity.

5.1.2.4 eapmschapv2.go

Chapter 5. Code structure

48

File to implement the class that represents a message of type MsCHAPv2.

5.1.2.5 eapnak.go

File to implement the class that represents a message of type LegacyNak.

5.1.2.6 eappeap.go

File to implement the class that represents a message of type PEAP.

5.1.2.7 eaptlv.go

File to implement the class that represents a message of type TLV.

5.1.3 radius

This folder contains the functions and structures necessary to work with the Radius

protocol allowing the generation of Radius packets and also implementing the cryptographic

algorithms to generate the authenticator field and the message-authenticator attribute when

necessary.

5.1.3.1 radiuscrypto.go

File containing all the functions that implement the cryptographic algorithms related to

the Radius protocol, like the resolution of the Authenticator field for Access-Challenge

messages, the calculation of the message-authenticator attribute when the EAP message

attribute is present and the encryption/decryption of the EAP-TLS keys that are present in

the Access-Accept message in form of the Microsoft vendor specific attributes as the MPPE

recv-send keys.

func CalculateResponseAuth(*RadiusPacket, [16]byte, string) (bool,

[16]byte)

This function implements the generation of the Authenticator field for Access-

Challenge messages. As arguments one must provide the challenge packet,the Authenticator

field from the corresponding Access-Request message (both the Access-Request message

and the Access-Challenge message must have the same identifier) and the shared secret

between NAS and authenticator server.

Chapter 5. Code structure

49

func RecalculateMsgAuth(*RadiusPacket, [16]byte, string) bool

Calculates the messsage-authenticator field for the given Radius packet. If the provided

packet is an Access-Challenge packet, the Authenticator field from the corresponding

Access-Request packet (that one which has the same identifier as the packet given as

argument) must be provided. The secret must be passed as third argument.

func DecryptKeyFromMPPE([]byte, [16]byte, string) (bool, []byte)

Decrypts the EAP-TLS key used to encrypt the 802.11 (WIFI) communications

between access point and NAS. As input, one must provide the content of one of the MS-

MPPE key attributes (the MS-MPPE-Send-Key or the MS-MPPE-Recv-Key attribute).

func EncryptKeyToMPPE([]byte, [16]byte, string) (bool, []byte)

Encrypts the EAP-TLS key used to encrypt the 802.11 (WIFI) communications

between access point and NAS. The corresponding EAP-TLS key must be provided as

argument and as result, an encrypted key is generated ready to be used as MS-MPPE key

attribute (the MS-MPPE-Send-Key or the MS-MPPE-Recv-Key attribute).

5.1.3.2 radiuspacket.go

This file contains the implementation details of a Radius packet.

type Attribute struct

Structure that represents an attribute in a Radius packet. The structure contains the type

of attribute and the content of attribute.

type VendorSpecificAttr struct

Chapter 5. Code structure

50

Structure representing a vendor specific attribute. It contains the type of vendor specific

attribute and the content of the attribute.

type RadiusPacket struct

Structure that represents a Radius packet. It is composed by the code, identifier (id),

length, authenticator and the attributes.

func NewRadiusPacket() *RadiusPacket

Constructor to generate RadiusPacket instances.

func (packet RadiusPacket) Clone() *RadiusPacket

To clone the packet given as argument. It returns an exact copy of the original packet.

func (packet *RadiusPacket) Decode(buff []byte) bool

Decodes from a slice of bytes all the fields from a Radius packet: The code, identifier,

authenticator and all the attributes.

func (packet *RadiusPacket) Encode() (bool, []byte)

Encodes into a slice a Radius packet including the code, the identifier, the authenticator

and all the attributes.

func (*RadiusPacket) GetRawAttr(attrType AttrType) (bool, [][]byte)
func (*RadiusPacket) DelRawAttr(attrType AttrType)
func (*RadiusPacket) SetRawAttr(attrType AttrType, data [][]byte)

Functions to get, set or delete an attribute of a Radius packet given its type.

func (*RadiusPacket) SetVendorSpecificAttrs(uint32,]VendorSpecificAttr)

func (*RadiusPacket) GetVendorSpecificAttrs(uint32) (bool,

[]VendorSpecificAttr)

Functions to get or set vendor specific attributes.

5.1.4 tlsadditions

In this folder, one can find the implementation about the TLS keyring material export.

Chapter 5. Code structure

51

5.1.4.1 handshake.go

This file implements the functions that allows the extraction of the client random and

server random from the Client hello and Server hello messages respectively during the 4-way

handshake in a TLS session.

5.1.4.2 keyring.go

This file is a copy of the functions defined in [GOPRF]. The functions defined here are

an implementation of the algorithms in charge of exporting the TLS keyring material (see

[RFC5705], Section 4 and [RFC2246], Section 5). As in [GOPRF] the functions are ot

exportable, they must be reimplemented locally.

5.1.5 session

This folder contains the code that manages the hijacked Radius session between the

NAS and authentication server and also the TLS session that is supposed to be established

between peer and authentication server.

5.1.5.1 tlsSession.go

It contains the code necessary to establish and manage a TLS session. Radius-Spy will

generate 2 TLS sessions. One between the peer and the Radius-Spy software and another

between the Radius-Spy software and the authentication server. The idea is to make the peer

believe that it is establishing a TLS session with the authentication server whereas it is

establishing a TLS session with the malicious software. In the same way, we make the

authentication server believe that the peer is starting a TLS session with it, whereas, it is

actually the Radius-Spy software that is establishing a TLS session with the authentication

server.

The point here is that the Golang libraries only allow creating a TLS client or a TLS

server over TCP or UDP transport protocol. In the study case, the TLS session is encapsulated

in a PEAP message which is also encapsulated in a Radius message. A workaround for this

is to generate a local tunnel where one of the sides is a standard TCP socket and the other

side is TLS socket with TCP as transport layer. One of the sides listens to localhost address

on a random TCP port and the other side connects to localhost address on the same TCP port.

When an encapsulated TLS packet from a PEAP message is received, the whole TLS packet

is forwarded with no manipulation to this standard TCP socket, and then, the packet can be

received on the other side by the TLS socket. At this point, the TLS library of Golang will

do the work to interpret the TLS payload received through the local TLS socket and our

software will manage the TLS session as if the session were established through TCP and not

encapsulated in a PEAP message.

Chapter 5. Code structure

52

Figure 18TLS local tunnel with Authentication Server

The operation can be done on the other sense. The payload (MsCHAPv2 messages) is

sent through the TLS/TCP socket. On the other side (the standard TCP socket), we can obtain

the MsCHAPv2 message encrypted inside the TLS packet. Then the TLS packet can be

encapsulated into a PEAP message and this one into a Radius message:

Figure 19TLS local tunnel with peer

type TLSLocalTunnel struct

This structure is a representation of the local TLS/TCP tunnel established to

encrypt/decrypt the TLS messages encapsulated in a PEAP message. This structure is

composed by both the standard TCP socket and the TLS/TCP socket and also two channels.

The channels are used to receive asynchronous data (in order to not block the TLS socket

when generating the 4-way handshake packets).

func (tunnel TLSLocalTunnel) WriteTls(tls []byte)

Writes the tls data into the TLS socket side of the tunnel.

func (tunnel TLSLocalTunnel) WriteRaw(raw []byte)

Chapter 5. Code structure

53

Sends the raw data into the standard TCP socket side of the tunnel.

func (tunnel TLSLocalTunnel) ReadTls() []byte

Reads from the TLS socket side of the tunnel and returns the read bytes. It can block.

func (tunnel TLSLocalTunnel) ReadRaw() []byte

Reads from the standard TCP socket side of the tunnel and returns the read bytes. It

can block.

func (tunnel TLSLocalTunnel) ReadTlsAsync()

Reads from the TLS socket side of the tunnel and stores the result in a channel. This

function creates a goroutine, so the function does not block.

func (tunnel TLSLocalTunnel) GetReadTLSChannel() chan []byte

Returns the channel in which the data read from ReadTlsAsync() has been stored.

func (tunnel TLSLocalTunnel) ReadRawAysnc()

Reads from the standard TCP socket side of the tunnel and stores the result in a

channel. This function creates a goroutine, so the function does not block.

func (tunnel TLSLocalTunnel) GetReadRawChannel() chan []byte

Returns the channel in which the data read from ReadRawAysnc() has been stored.

type KeyringData struct

This structure is used to keep track of all the components needed to export the keyring

material (client/server random and the master secret).

type TLSSession struct

This structure holds the context of a TLS session for a particular peer. It is composed

by two TLSLocalTunnel members, one to manage the TLS session between attacker and

authenticator server (the TCP port used is 400) and the other one to manage the TLS session

between attacker and NAS (the TCP port used is 401). The structure also contains a

KeyringData member and also members to keep track of the status of the 4-way handshake

process.

var keyringWriter *keyRingChannelWriter

Chapter 5. Code structure

54

This variable is assigned to the member KeyLogWriter inside the tls.Config

structure. The KeyLogWriter member will furnish us with the master secret of the TLS

session by means of the callback func (writer *keyRingChannelWriter) Write(p

[]byte) (n int, err error) as the KeyLogWriter member is of type Writer

interface and keyRingChannelWriter must implement this interface.

func initLocalTLSServer()

Function responsible to initialize the TLS and TCP servers that are listening to

connections on the ports 400 and 401 respectively.

func NewTLSSession() *TLSSession

Function that generates the TLS context necessary to manage the session. It creates the

two TLSLocalTunnel objects for the current context. The TLS connection generated for the

session between attacker and NAS will remain blocked until the 4-way handshake is

completed. This is the reason why we need to use channels so that we can “read”

asynchronously from TLS server so that it can generate internally the handshake packets.

5.1.5.2 session.go

This file implements the functions in charge of intercepting the UDP packets

exchanged between NAS and authentication server and keep track of the number of clients

(NAS) that have established a session with the authentication server.

type Session struct

Structure that keeps track of the current hijacked session.

func (session *Session) Init(mode Mode, hostName string, ports ...int)

To configure a session hijack against the authentication server specified as the

argument hostName. The UDP ports to hijack are specified in the slice ports.

func (session *Session) Hijack(mangleFunc MangleFunc)

Blocking function that runs the main loop that hijacks the session previously

configured. As argument, one must provide a pointer to a function of type MangleFunc (see

code for further details). The provided function will be called every time a packet is

intercepted. The intercepted packet is passed as argument to the given function, so that the

function can mangle it and choose whether forward the packet or not.

Chapter 5. Code structure

55

func (session *Session) SendPacket(packet *radius.RadiusPacket,

clientToServer bool)

Sends the packet given as argument to the authentication server if the argument

clientToServer is true. Otherwise, the packet is sent towards the NAS.

5.1.5.3 config.go

Contains the different options configured for the program, like the secrets file used for

the dictionary attack.

5.1.5.4 context.go

type TLSContext struct

type EAPContext struct

type MsChapV2Context struct

type ContextInfo struct

All these structures allows us to save and retrieve data concerning the radius attributes,

the TLS session, the EAP status, MsCHAPv2 status for the current session between NAS and

authentication server.

5.1.6 utils

Helper functions used to ease the development of some tasks.

5.1.7 main

5.1.7.1 main.go

This file implements the actual modification of the Radius packets so that the attacker

can take control of the authentication process.

func manglePacket(manglePacket *radius.RadiusPacket, from net.UDPAddr, to

net.UDPAddr, clientToServer bool) bool

This function is called when a Radius packet is intercepted. One can mangle the

packet here and then decide to forward it to the destination or not by returning true or false.

func forwardOrDelayTLSData(tlsContent []byte, context

*session.ContextInfo, peapPacket *eap.EapPeap, clientToServer bool)

As our software must establish two TLS sessions at the same time, one with the

NAS and the other one with the authentication server, the application may delay the

forwarding of the content of some TLS packets until both TLS sessions have been

Chapter 5. Code structure

56

established.

func deliverDelayedTLSData(clientToServer bool)

In case that some TLS payloads have been delayed, this functions delivers them.

func manageServerPeap(manglePacket *radius.RadiusPacket, from

net.UDPAddr, to net.UDPAddr, peapPacket *eap.EapPeap, context

*session.ContextInfo, clientToServer bool) bool

This function handles the PEAP messages received from the authentication server

func manageNASPeap(manglePacket *radius.RadiusPacket, from net.UDPAddr,

to net.UDPAddr, peapPacket *eap.EapPeap, context *session.ContextInfo,

clientToServer bool) bool

This function handles the PEAP messages received from the NAS.

func craftPacketFromTLSPayload(context *session.ContextInfo, payload

[]byte, msgID uint8, eapID uint8, clientToServer bool, authenticator

[16]byte) *radius.RadiusPacket

This function generates a new Radius packet to be sent to the NAS or the

authentication server in function of the argument clientToServer. The payload is the

TLS content to be encapsulated in a PEAP message which is also encapsulated in a Radius

message.

func onTLSData(tlsContent []byte, context *session.ContextInfo,

outerPeapPckt *eap.EapPeap, clientToServer bool)

This function is called every time that a TLS packet is decrypted. The argument

clientToServer indicates if the packet comes from the authentication server or the peer.

func manageMsChapV2(packet *eap.EapMSCHAPv2, context

*session.ContextInfo)

Handles the credentials exchange occurring in the MsCHAPv2 messages.

func processEapSuccessResponse(context *session.ContextInfo, eapHeader

*eap.HeaderEap, manglePacket *radius.RadiusPacket)

This function manipulates the Radius Access-Accept message so that the MPPE

keys are correctly provided to the NAS. The MPPE keys calculated by the authentication

server are derived from the TLS session. As the software Radius-Spy established the TLS

session with the authentication server and not the peer, the MPPE keys calculated by the

authentication server are not the ones expected by the NAS. The peer has calculated the

Chapter 5. Code structure

57

keys from the TLS session between the Radius-Spy application and the peer itself. Radius-

Spy must recalculate the MPPE key attributes for the NAS to have the same keys as the

peer.

The following image is a representation of the key derivation process to generate

the keys that will be used to encrypt the 802.11 packets exchanged between access point

and peer in the WIFI network:

Figure 20Key derivation

In the step 5, the authentication server sends a Radius Access-Accept message with the

MPPE key attributes to the NAS. The software Radius-Spy needs to modify the message

before forwarding it. For that, it must recalculate the MPPE key attributes from the keys

derived from the TLS session between peer and the Radius-Spy application itself.

func updateContextFromPacket(context *session.ContextInfo, manglePacket

*radius.RadiusPacket)

Copies some relevant information from the given Radius packet into the context.

func main()

Entry point of the Radius-Spy software. Here, one configure the session against the

corresponding authentication server.

CAPÍTULO 6

Chapter 6. Study case

59

CHAPTER 6. Study case

We are going to analyse all the steps performed to accomplish our task. To take control

of the credential exchange process, passively (guess credentials by dictionary attack) or

actively (mangling packets to bypass the authentication process).

First of all, we capture the traffic exchanged between authentication server and NAS

when a peer is authenticating itself. We make use of Wireshark:

Figure 21Wireshark capture

Radius-Spy must decode and interpret the Radius messages. In particular, the Access-

Request and Access-Challenge messages. This is implemented in the file radiuspacket.go.

Once the Radius message is decoded, Radius-Spy has to save the information provided by

the attributes in the Access-Request message into the context for the current user (see func

updateContextFromPacket).

If Radius-Spy proceeds to modify an attribute from a Radius message that has been

intercepted, the destination will reject it. The authenticator field and the authenticator-

message attribute (type 80) are signatures of the Radius message, therefore, every time a field

is modified, the signatures must be recalculated so that the destination can accept the message

after validating it from the signatures. For that, Radius-Spy must know or discover the secret

shared between NAS and authentication server. Provided that Radius-Spy knows the shared

secret, it can modify these fields and they will be validated by the destination. As example,

Chapter 6. Study case

60

the attribute Called-Station-ID is modified. For Access-request messages, only the

authenticator-message must be recalculated.

Figure 22Radius attributes modification

Radius-Spy will recalculate the authenticator field by calling the function func

RecalculateMsgAuth and the authenticator-message attribute by calling the function func

CalculateResponseAuth.

Once Radius-Spy has decoded the attributes from the Radius message and is capable

of modifying them, we focus on the EAP-message attribute (type 79) that contains the EAP

messages sent by the peer. The first EAP message sent by the peer is the identity of the user.

Figure 23EAP identity message

The authentication server answers back proposing the EAP-GTC method to carry out

the credentials exchange.

Figure 24EAP-GTC message

Chapter 6. Study case

61

Then, the peer refuses to use such as insecure method by responding back with a

LegacyNak EAP message and proposing another EAP method more secure. In the study case,

the peer proposes PEAP as preferred method.

Figure 25Legacy NAK message

At this moment, the authentication server and the peer start to exchange PEAP

messages.

The purpose of PEAP is to establish a TLS session between peer and authentication

server. Radius-Spy needs to intercept the PEAP messages and start a TLS session with the

peer and another one with the authentication server for the Radius-Spy software to obtain the

TLS payload in cleartext.

Figure 26TLS session hijacking

PEAP can fragment the TLS payloads into several PEAP messages. This is notified by

setting the More Fragments flag.

Chapter 6. Study case

62

Figure 27TLS payload fragmented

Radius-Spy calls the function func (context *ContextInfo)

AddTLSServerPayload(payload []byte) to store the fragmented TLS payload.

When receiving a fragmented packet, Radius-Spy needs to send a “kind of ACK” which

consists in an empty EAP-PEAP message (there are no either set flags or payload in the

message).

Figure 28PEAP ACK Message

The start of the TLS conversation happens when the Authenticator server sends an

EAP-PEAP message where the flag start is set.

Figure 29TLS session start

Chapter 6. Study case

63

The PEAP messages exchanged with the authentication server are processed by func

manageServerPeap whereas the messages exchanged with the peer are processed by func

manageNASPeap. Both functions will manage the 4-way handshake and obtain the TLS

payload in cleartext (see [RFC2246], Section 7.4).

Figure 304-way handshake

Also, when the 4-way handshake has finished with the peer, the TLS keyring material

is exported for later use to derive keys. This is done by Radius-Spy by calling func

EkmFromMasterSecret.

Chapter 6. Study case

64

Figure 31TLS handshake between peer and Radius-Spy

When the handshake has finished, an “ACK” message must be sent by the peer that has

started the handshake (the TLS client). When managing the conversation between the peer

to be authenticated and and Radius-Spy, the intruder expects to receive an “ACK” message.

On the other hand, when dealing with the TLS conversation between Radius-Spy and

authentication server, Radius-Spy must generate an “ACK” message as shown before.

Figure 32PEAP Ack Message

Chapter 6. Study case

65

Figure 33The handshake process between Radius-Spy and authentication server

And the “ACK” message:

Figure 34PEAP ACK message

At this point, Radius-Spy is capable of decrypting the TLS content from the PEAP

messages in cleartext and analyse its content.

The content of the TLS payload in cleartext consists of MsCHAPv2 messages. The

MsCHAPv2 messages are treated in func manageMsChapV2.

Chapter 6. Study case

66

Figure 35MsCHAPv2 challenge

The only way for Radius-Spy to have acknowledge of the user’s password is by

obtaining the authenticator challenge, the peer challenge and the nt-response from the

MsCHAPv2 messages and by performing a dictionary attack with a list of possible passwords

and once the calculated nt-response is identical to the sniffed one, the password is discovered.

After the credential exchange from the MsCHAPv2 messages has finished, the

authentication server sends a EAP-TLV success message answered back with the same

message by the peer.

As a final step to accomplish the authentication process, the authentication server sends

a Radius Access-Accept message which is intercepted by Radius-Spy, because the MPPE key

attributes must be modified so that they match with the keys expected by the peer as

implemented in func processEapSuccessResponse.

At this point, the authentication process has finished and one can confirm that Radius-

Spy knows the secret shared between peer and authentication server and the credentials for

the user that has been authenticated. Radius-Spy can also calculate the keys derived for

packet encryption in the 802.11 network.

CHAPTER 7. Conclusions and proposals

67

CHAPTER 7.

68

CHAPTER 7. CONCLUSIONS AND

PROPOSALS

Through this report, we have learned how the Radius protocol and the EAP protocol

work in a context where the NAS is an access point of an 802.11 network and within this

context, we have learned how the credentials exchange is performed as well as the security

measures implemented in both protocols to avoid packet manipulation and assure the

integrity and authenticity of the messages. We have also developed a tool to track the

authentication process and in case that the exchanged authentication data is not robust enough

(password and secret not robust enough) we are able to discover them and derive the keys

used for encryption of packets exchanged in the 802.11 network. We are also capable of

transmitting such keys to the NAS so that both the NAS and the peer use the same key suite

and in addition we have also knowledge of this key suite.

7.1 CONCLUSIONS

Even though we were able to develop a tool that compromises the security of the

credentials exchange in the environment for this case study, the tool could be already

improved to perform much more tasks. The tool has only been tested in one scenario which

is the scenario that corresponds to the case study.

The tool should be tested in different environments to validate it and in a concurrent

manner where several peers try to authenticate at the same time to verify that the tool can

work concurrently. The tool should be also tested when different NAS communicate at the

same time with the authentication server.

One can also read this document to have a global vision of the way the Radius and EAP

protocols work and how to try to find weaknesses in such protocols. One can also learn how

CHAPTER 7. Conclusions and proposals

69

the keys for cyphering are derived from the TLS session for their use later in the

encryption/decryption of packets in the WIFI (802.11) network.

7.2 FUTURE WORK AND POSSIBLE EXTENSIONS

Although we have done a good approach to the objectives that we wanted to achieve

in this report, several improvements can be implemented for the Radius-Spy tool:

● A database where to track and store every message that Radius-Spy intercepts

and also every secret or password that has been cracked.

● Authenticate successfully clients even if they do not know the corresponding

credentials (on the other hand, Radius-Spy should know the credentials)

● We can extend the role of the tool to not only perform attacks but also to collect

some information for logging and auditing purposes.

● Extend TLS version to 1.1 and 1.2 (Only TLS 1.0 currently supported).

70

BIBLIOGRAPHY

71

BIBLIOGRAPHY

INTERNET LINKS

[RFC2865] Remote Authentication Dial In User Service (RADIUS). RFC 2865.

https://tools.ietf.org/html/rfc2865

[RFC2869] Radius Extensions. RFC 2869.

https://tools.ietf.org/html/rfc2869

[RFC3579] RADIUS (Remote Authentication Dial In User Service) Support For

Extensible Authentication Protocol (EAP). RFC 3579.

https://tools.ietf.org/html/rfc3579

[RFC2866] RADIUS Accounting.

https://tools.ietf.org/html/rfc2866

[RFC2548] Microsoft Vendor-specific RADIUS Attributes.

https://tools.ietf.org/html/rfc2548

[RFC3748] Extensible Authentication Protocol (EAP)

https://tools.ietf.org/html/rfc3748

[PEAP] Protected EAP Protocol (PEAP).

https://tools.ietf.org/id/draft-josefsson-pppext-eap-tls-eap-06.txt

[MSCHAPV2] Microsoft EAP CHAP Extensions draft-kamath-pppext-eap-

mschapv2-02.txt.

https://tools.ietf.org/html/draft-kamath-pppext-eap-mschapv2-02

[RFC2759] Microsoft PPP CHAP Extensions, Version 2.

https://tools.ietf.org/html/rfc2759

[RFC5705] Keying Material Exporters for Transport Layer Security (TLS).

https://tools.ietf.org/html/rfc5705

[RFC2246] The TLS Protocol Version 1.0

https://www.ietf.org/rfc/rfc2246.txt

[RFC5216] The EAP-TLS Authentication Protocol

https://tools.ietf.org/html/rfc5216

[GOPRF] Golang PRF (TLS Pseudorandom Function) implementation

https://github.com/golang/go/blob/master/src/crypto/tls/prf.go

https://tools.ietf.org/html/rfc2865
https://tools.ietf.org/html/rfc2869
https://tools.ietf.org/html/rfc3579
https://tools.ietf.org/html/rfc2866
https://tools.ietf.org/html/rfc2548
https://tools.ietf.org/html/rfc3748
https://tools.ietf.org/id/draft-josefsson-pppext-eap-tls-eap-06.txt
https://tools.ietf.org/html/draft-kamath-pppext-eap-mschapv2-02
https://tools.ietf.org/html/rfc2759
https://tools.ietf.org/html/rfc5705
https://www.ietf.org/rfc/rfc2246.txt
https://tools.ietf.org/html/rfc5216
https://github.com/golang/go/blob/master/src/crypto/tls/prf.go

72

BIBLIOGRAPHY

73

74

GLOSSARY OF TERMS

Authenticating peer (peer)

Element of the network that desires to verify its identity against the authenticator.

Authenticator (NAS)

Element in charge of checking the identity of the peers. It can manage the

requests from the peers with the concerning credentials itself or delegate the whole

process to the authentication server. When the authentication process is manage by

the authenticator, one can say that the authenticator and the authentication server

are the same element.

Authenticator server

The server who holds the credentials for the authenticating peers and listens and

processes the requests forwarded by the authenticator and originated by the peers in order to

verify the peers’ credentials. This element can be located in another network than the one

where the peers and the authentication server are placed.

Radius

Protocol used between authenticator and authentication server. Radius messages are

composed by several attributes, some of them containing encapsulated messages with the

credentials of the authenticating peer. This credentials are normally encrypted so that neither

the authenticator or someone else in the network can sniff them.

Extensible Authentication Protocol (EAP)

Protocol that lets the exchange of credentials between authenticating peer and the

authentication server. The authenticator receive EAP messages from the peer and

encapsulates them into RADIUS messages intended to the authentication server.

Station (STA)

BIBLIOGRAPHY

75

Element connected to a WIFI network by means of an Access Point. It is able to

communicate with other stations connected to the same Access Point. The station must

probe, associate and authenticate against the Access Point (or Authenticator) to be able to

communicate to the rest of stations.

Access Point (AP)

Element in the WIFI network that forwards packets amongst the stations.

Secret

 Shared token between NAS and authentication server. This token is configured

manually in both sides. This token provides both elements a way to encrypt and sign Radius

messages, so that the integrity and authenticity of them are protected against modifications.

FreeRadius

 Software that runs inside the authentication server in our scenario, that process and

manages the Radius protocol.

https://freeradius.org

Radius-Spy

 Software to exploit the communications between NAS and authentication server

when the NAS is an access point to a WIFI (802.11) network. This software let the user

intercept Radius and EAP packets and manipulate them when a peer is authenticating against

the authenticator server. This software is subject of study in the present document.

Source code: https://github.com/famez/Radius-Spy

Hostapd

Software running under Linux that allows a system to behave as access point.

https://help.ubuntu.com/community/WifiDocs/WirelessAccessPoint

https://freeradius.org/
https://github.com/famez/Radius-Spy
https://help.ubuntu.com/community/WifiDocs/WirelessAccessPoint

76

Dhcpd

Software running under Linux that allows a system to behave as dhcp server.

https://linux.die.net/man/8/dhcp

77

ANNEX A Configuration of Man In the

Middle Attack

Here, the steps to configure the man in the middle attack are explained.

The software Radius-Spy is executed in an Ubuntu 18.04.1 LTS machine. As a

reminder, the scenario to test is as follows:

Figure 36Test Scenario

78

The commands introduced in the Linux machine are the following:

#iptables rules to redirect traffic between NAS and authentication server

#to the Radius-Spy software

sudo iptables -t nat -I PREROUTING -p udp --dport 1813 -j REDIRECT --to-ports 1813

sudo iptables -t nat -I PREROUTING -p udp --dport 1812 -j REDIRECT --to-ports 1812

sudo iptables -t nat -I POSTROUTING -p udp --dport 1812 -j SNAT --to-source 169.254.63.2

sudo iptables -t nat -I POSTROUTING -p udp --dport 1813 -j SNAT --to-source 169.254.63.2

sudo iptables -t nat -A PREROUTING -p udp --sport 1812 -j DNAT --to 169.254.63.15

sudo iptables -t nat -A PREROUTING -p udp --sport 1813 -j DNAT --to 169.254.63.15

sudo iptables -t nat -I POSTROUTING -p udp --sport 1812 -j SNAT --to-source 169.254.63.10

sudo iptables -t nat -I POSTROUTING -p udp --sport 1813 -j SNAT --to-source 169.254.63.10

#Install arpspoof

sudo apt-get install dsniff

#Command to perform spoofing

sudo arpspoof 169.254.63.2 -t 169.254.63.10 -r

In another terminal, execute:

#Install golang

sudo apt install golang-go

#Install Radius-Spy

go get -u -v github.com/famez/Radius-Spy

#Create de server keys

mkdir ~/go/bin/TestKeys

cd ~/go/bin/TestKeys/

openssl req \

 -newkey rsa:2048 -nodes -keyout server.key \

 -x509 -days 365 -out server.crt

Create passwords and secrets files

cd ~/go/bin/

vim passwords.txt #Add a password per line

vim secrets.txt #Add a secret per line

#Execute Radius-Spy

cd ~/go/bin/

./Radius-Spy -active -logtostderr -secrets=secrets.txt -passwords=passwords.txt

-server=169.254.63.10

79

ANNEX B Options for Radius-Spy

The options for the Radius-Spy command are the following:

-active

 When activated, communications will be intercepted, otherwise, we only

forward packets

 -alsologtostderr

 log to standard error as well as files

 -log_backtrace_at value

 when logging hits line file:N, emit a stack trace

 -log_dir string

 If non-empty, write log files in this directory

 -logtostderr

 log to standard error instead of files

 -passwords string

 Passwords file to perform dictionary attacks (default "passwords.txt")

 -secrets string

 Secrets file to perform dictionary attacks (default "secrets.txt")

 -server string

 Authentication server to attack (default "169.254.63.10")

 -stderrthreshold value

 logs at or above this threshold go to stderr

 -v value

 log level for V logs

 -vmodule value

 comma-separated list of pattern=N settings for file-filtered logging

